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  Adopted as Rule: November 2023 

Toxicological Summary for: Perfluorohexane sulfonate 
CAS:  108427-53-8 (anion)  

355-46-4 (acid) 
3871-99-6 (potassium salt) 

Synonyms: PFHxS; perfluorohexanesulfonic acid; 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexane-1-
sulfonate 

Short-term, Subchronic and Chronic* Non-Cancer Health Risk Limit (nHRL) = 0.047 µg/L** 
*Due to the highly bioaccumulative nature of PFHxS within the human body, serum concentrations are the most 
appropriate dose metric and the standard equation to derive the HRL is not appropriate. Short-term exposures have the 
potential to stay in the body for an extended period of time. In addition, accumulated maternal PFHxS is transferred to 
offspring (i.e., placental and breastmilk transfer). A single HRL has therefore been recommended for short-term, 
subchronic, and chronic durations. The HRL was derived using a toxicokinetic (TK) model previously developed by MDH 
(Goeden 2019). Model details and results are presented below.  
 
**Relative Source Contribution (RSC): Using the most recent published biomonitoring results (CDC, accessed February 2019) 
and USEPA’s Exposure Decision Tree (USEPA 2000) as outlined in MDH 2008, Section IV.E.1., an RSC of 0.5 (50%) was 
selected for the peak serum concentration during infancy. The RSC of 0.5 during infancy resulted in chronic (steady-state) 
serum concentrations at approximately 0.2 of the ‘reference’ serum concentration. 

Intake Rate: In keeping with MDH’s peer-reviewed and promulgated methodology, 95th percentile water intake rates (Table 
3-1, 3-3 and 3-5, USEPA 2019) or upper percentile breastmilk intake rates (Table 15-1, USEPA 2011) were used. Breastmilk 
concentrations were calculated by multiplying the maternal serum concentration by a PFHxS breastmilk transfer factor of 
1.4%.  For the breast-fed infant exposure scenario, a period of exclusive breastfeeding for one year was used as 
representative of a reasonable maximum exposure scenario. [Note: “exclusively breast-fed” intake rates refers to infants 
whose sole source of milk comes from human breastmilk, with no other milk substitutes (USEPA 2011, page 15-2).]  

A simple equation is typically used to calculate HRLs at the part per billion level with results rounded to one significant digit. 
However, the toxicokinetic model used to derive the HRL for PFHxS showed that serum concentrations are impacted by 
changes in water concentrations at the part per trillion level. As a result, the HRL contains two digits. 

 Reference Dose/Concentration: HED/Total UF = 0.00292/300 = 0.0000097 mg/kg-d (or 9.7 
ng/kg-d) (adult Sprague Dawley rats). [The corresponding 
serum concentration is 32.4/300 = 0.108 µg/mL. Note: this 
serum concentration is inappropriate to use for individual 
or clinical assessment.***] 

 Source of toxicity value: Determined by MDH in 2019 
 Point of Departure (POD): 32.4 µg/mL (or mg/L) serum concentration (male rats - 

NTP 2018, MDH modeled BMDL20%) 
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 Dose Adjustment Factor (DAF):  Toxicokinetic Adjustment based on Chemical-Specific 
Clearance Rate = Volume of Distribution (L/kg) x (Ln2/Half-
life, days) = 0.25 L/kg x (0.693/1935 days) = 0.000090 L/kg-
day. (Half-life from Li et al 2018)  

 Human Equivalent Dose (HED): POD x DAF = 32.4 mg/L x 0.000090 L/kg-d = 0.00292 
mg/kg-d 

 Total uncertainty factor (UF): 300 
 Uncertainty factor allocation: 3 for interspecies differences (for toxicodynamics), 10 for 

intraspecies variability, and 10 for database uncertainty to 
address concerns regarding early life sensitivity to 
decreased thyroxine (T4) levels as well as lack of 2 
generation or immunotoxicity studies. 

 Critical effect(s): decreased free T4 
 Co-critical effect(s): decreased free and total T4, triiodothyronine (T3), and 

changes in cholesterol levels and increased hepatic focal 
necrosis  

 Additivity endpoint(s): Hepatic (Liver) System and Thyroid (E) 
***The serum concentration is useful for informing public health policy and interpreting population-based exposure 
potential. This value is based on population-based parameters and should not be used for clinical assessment or for 
interpreting serum levels in individuals.  

Toxicokinetic Model Description (Goeden 2019): 

PFHxS is well absorbed and is not metabolized. Serum concentrations can be calculated from the dose 
and clearance rate using the following equation. 

 
Where: 

Dose (mg/kg-day) = Water or Breastmilk Intake (L/kg-day) x Water or Breastmilk Concentration (mg/L) 
and 
Clearance (L/kg-day) = Volume of distribution (L/kg) x (Ln 2/human half-life, days) 

Two exposure scenarios were evaluated: 1) an infant fed formula reconstituted with contaminated 
water starting at birth and continuing ingestion of contaminated water through life; and 2) an infant 
exclusively breast-fed for 12 months, followed by drinking contaminated water. In both scenarios the 
simulated individuals began life with a pre-existing body burden through placental transfer of PFHxS 
(maternal serum concentration x 70%) based on median cord to maternal serum concentration ratios 
reported in the literature. The serum concentration of the mother at delivery was assumed to be at 
steady-state and was calculated by using the equation above with a time-weighted 95th percentile 
intake from birth to 30 years of age (0.048 L/kg-d). During lactation a 95th percentile water intake rate 
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of 47 mL/kg-d and a body weight of 65.1 kg ((USEPA 2019), Table 3-3) was used to calculate daily 
maternal serum concentrations. 

Consistent with MDH methodology, 95th percentile water intake and upper percentile breastmilk 
intake rates were used to simulate a reasonable maximum exposed individual. A PFHxS breastmilk 
transfer factor of 1.4%, based on average breastmilk to maternal serum concentration ratios reported 
in the literature, was used to calculate breastmilk concentration. According to the 2016 Breastfeeding 
Report Card (CDC, 2016), nearly 66 percent of mothers in Minnesota report breastfeeding at six 
months, dropping to 41% at twelve months. MDH chose to use the breastmilk intake rates for 
exclusively breastfed infants, as reported in USEPA 2011, for one year for the breast-fed infant 
scenario. 

Daily post-elimination serum concentration was calculated as:  

 

To maintain mass balance, daily maternal serum concentrations and loss-of-chemical via transfer to 
the infant as well as excretion represented by the clearance rate, were calculated. 

Summary of Reasonable Maximum Exposure (RME) Scenario Model Parameters 
Model Parameter Value Used 

Volume of distribution (Vd) 0.25 L/kg (average of male (0.287) and female (0.213) nonhuman 
primate Vd, Sundstrom, 2012) 

Vd Age Adjustment Factor 2.1 age 1-30 days decreasing to 1.2 age 5-10 years and 1.0 after age 10 
years (Friis-Hansen 1961) 

Half-life 1935 days (mean value for all ages, Li et al 2018) 
(5th to 95th percentile range: 1095 – 3358 days) 

Elimination rate constant (k)  Calculated from Ln 2/half-life 
Placental transfer factor  
(% of maternal serum level) 

70% (mean of median paired maternal:cord blood ratios reported in the 
literature. Range of mean values 43 – 95%.) 
(Mean 95th percentile value 110%, range 69 – 168%.) 

Breastmilk transfer factor 
(% of maternal serum level) 

1.4% (mean of mean paired maternal serum:breastmilk ratios reported 
in the literature. Range of mean values 0.8 – 2%.) 
(No 95th percentile values reported in literature.) 

Water Intake Rate (L/kg-d) 95th percentile consumers only (default values, MDH 2008) (Table 3-1 
(for ages > 2 yrs), 3-3 (for lactating women), and 3-5 (for ages < 2yr)) 
(USEPA 2019) 

Breastmilk Intake Rate (L-kg-d) Upper percentile exclusively breast-fed infants (Table 15-1, USEPA 2011) 
Body weight (kg) Calculated from water intake and breastmilk intake rate tables 
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A relative source contribution factor (RSC) is incorporated into the derivation of a health-based water 
guidance value to account for non-water exposures. MDH utilizes the Exposure Decision Tree process 
presented in USEPA 2000 to derive appropriate RSCs. Determination of an appropriate RSC must 
recognize the long elimination half-life of PFHxS, such that a person’s serum concentration at any given 
age is not only the result of his or her current or recent exposures within the duration of concern, but 
also from exposure from years past.  

Human biomonitoring data provide a quantitative description of the ongoing widespread exposure, but 
the serum data are not informative as to the specific pathways and exposure routes. The most recently 
reported 95th percentile serum concentrations from CDC (February 2019) range from 1.62 µg/L serum 
for young children to nearly 5 µg/L serum for older children and adults. This suggests that ‘background’ 
exposures, when compared to the ‘reference’ serum concentration (108 µg/L serum) would not 
represent significant sources of exposure. Using the most recent published biomonitoring results and 
USEPA’s Exposure Decision Tree (USEPA 2000) as outlined in MDH 2008, an RSC of 0.5 (50%) was 
selected.  

As mentioned above, two exposure scenarios were examined: 1) an infant fed formula reconstituted 
with PFHxS-contaminated water starting at birth and continuing ingestion of contaminated water 
throughout life; and 2) an infant exclusively breast-fed for 12 months, followed by drinking PFHxS-
contaminated water throughout life. For the first scenario, the formula-fed infant, the water 
concentration that maintains a serum concentration attributable to drinking water at or below an RSC 
of 50% is 0.099 µg/L (Figure 1).  

Figure 1. Exclusively formula-fed infant scenario serum concentrations over a lifetime, based on MDH’s 
RME and an RSC of 50%. 
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Applying this water concentration (0.099 µg/L) in the context of the breast-fed infant resulted in serum 
PFHxS concentrations exceeding the ‘reference’ serum concentration for nearly 2 years, and the 50% 
RSC threshold for nearly 14 years. See Figure 2. 

Figure 2. Breast-fed infant scenario serum concentrations over a lifetime, based on MDH’s RME and a 
water concentration of 0.099 µg/L. 

 
 

In order to maintain serum concentrations at or below an RSC of 50% for breast-fed infants, the water 
concentration should not exceed 0.047 µg/L; see Figure 3. This water concentration also produces 
steady state serum concentrations at approximately 20% of the ‘reference’ serum concentration. 
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Figure 3. Exclusively breast-fed infant scenario serum concentrations over a lifetime, based on MDH’s 
RME, and a water concentration of 0.047 µg/L. 

 
To ensure protection of all segments of the population, the final health-based value for PFHxS is set 
at 0.047 µg/L. 

Cancer Health Risk Limit (cHRL) = Not Applicable 

 Cancer classification: Not Classified 
 Slope factor (SF): Not Applicable 
 Source of cancer slope factor (SF): Not Applicable 
 Tumor site(s): Not Applicable 

Volatile: Yes (moderate)  

Summary of Guidance Value History: 
MDH first reviewed PFHxS in 2009 and determined that there was insufficient data to derive a value. In 
2013, MDH’s Site Assessment and Consultation Unit began using the guidance value for PFOS as a 
surrogate to assess potential risks from exposure to PFHxS, in the absence of adequate chemical 
specific data. In 2018 additional toxicokinetic and toxicity information became available. In 2019, MDH 
derived a noncancer HBV (applicable to short-term, subchronic, and chronic durations) of 0.047 µg/L. 
In 2020 MDH incorporated updated water intake rates (US EPA 2019). Use of the updated intake rates 
did not result in changes to the 2018 value. In November 2023, the guidance values were adopted into 
Minnesota Rules, 4717.7860, as Health Risk Limits (HRLs). 
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Summary of toxicity testing for health effects identified in the Health Standards Statute (144.0751): 
Even if testing for a specific health effect was not conducted for this chemical, information about that effect might be 
available from studies conducted for other purposes. MDH has considered the following information in developing health 
protective guidance. 

 Endocrine Immunotoxicity Development Reproductive Neurotoxicity 
Tested for 
specific effect? Yes No Yes Yes Yes 

Effects 
observed? Yes1 -2 No3 Yes4 No5 

Comments on extent of testing or effects: 
1 Several human epidemiological studies have evaluated the possible association between serum 

PFHxS and alterations in thyroid hormone levels. Two studies found an association in women 
between serum PFHxS and thyroid hormone levels, however, other studies did not find this 
association. Two general population epidemiology studies have evaluated associations between 
PFHxS and reproductive hormones, finding no association. 

 
Based on studies in laboratory animals, alterations in serum thyroid hormone levels, in particular 
thyroxine (T4), appear to be a sensitive effect. The POD is based on decreased serum T4 levels in 
adult male rats however, decreased serum T4 levels have also been reported in pregnant and 
lactating rats and pups. Unfortunately, serum PFHxS levels were not measured in pregnant or 
lactating rats or pups at the NOAEL and LOAEL dose levels, however, study results suggest that pups 
may be more sensitive than adult nonpregnant animals. A database uncertainty factor (DB UF) has 
been incorporated into the RfD derivation, in part, due to concerns that early life stages may be more 
sensitive.  
Androgenic effects have also been evaluated in laboratory animals to a limited extent. No changes in 
adult male reproductive organ weights or sperm parameters were observed at serum levels up to 
~600-fold higher than the ‘reference’ serum concentration. Androgenic activity was also evaluated in 
pups exposed in utero and through lactation. No significant effects were observed on anogenital 
distance, nipple retention, or reproductive organ weights at serum levels ~1300-fold higher than the 
‘reference’ serum concentration. 
 

2 Several epidemiology studies have examined the potential association between PFHxS and 
suppression of the immune system. Inverse or no associations were observed in these studies. In 
general, available studies have not found an association between PFHxS and infectious disease 
resistance or with hypersensitivity outcomes.  

 
Immunotoxicity has not been studied in laboratory animals. A DB UF has been incorporated into the 
RfD derivation, in part, to address this data gap. 
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3 General population epidemiology studies have evaluated potential associations between maternal 
PFHxS and a variety of birth outcomes. A couple of studies have reported associations with birth 
weight or neurobehavioral outcome but others found no association.  

 
Reproductive/developmental screening studies in rats and mice have not found treatment related 
changes in development outcome, including neurobehavioral effects, at serum levels > ~900-fold 
higher than the ‘reference’ serum concentration. Neurobehavioral outcomes were also evaluated in 
a study using a single oral exposure to neonatal mice on postnatal day 10. No serum levels were 
measured and therefore, the results could not be quantitatively incorporated into MDH’s 
assessment.  No 2-generation study has been conducted. A DB UF has been incorporated into the RfD 
derivation, in part, to address this data gap.  
 

4 In general, epidemiology studies evaluating potential associations between PFHxS and reproductive 
measures have not found any associations. A small number of studies have reported associations 
with earlier menopause or time to pregnancy. However, since menstruation, childbirth, and lactation 
are potential elimination routes for women this could confound the associations.  

 
Laboratory studies in rats did not find changes in reproductive parameters at serum levels > ~1600-
fold higher than the ‘reference’ serum concentration. A decrease in the number of pups per litter has 
been reported in mice, however the dose-response curve was flat and there was no difference in the 
number of pups born to the implant ratio.  The ‘reference’ serum concentration is ~500-fold lower 
than the serum concentrations at which this effect occurs in mice, therefore the RfD is protective for 
this potential effect.  
 

5 Two epidemiology studies have evaluated association between PFHxS serum levels and self-reported 
memory loss or periods of confusion. One study reported a decrease in risk at the fifth quintile 
whereas the second study found no association.  

 
Laboratory animal studies have evaluated neurotoxicity using the functional observation battery 
(FOB) and motor activity assessment. No effects were observed on adult rats and mice at serum 
concentrations >~600-fold higher than the ‘reference’ serum concentration. Potential neurological 
effects have also been evaluated in rat pups using these same evaluation tools. No effects were 
observed at serum concentrations up to ~800-fold higher than the ‘reference’ serum concentration. 
A neurotoxicity evaluation following a single oral dose to neonatal animals has also been conducted. 
See footnote #3 above.  
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