DEPARTMENT OF HEALTH

2024 Volatile Organic Compounds Inhalation Toxicity Value Review

Purpose

The Minnesota Pollution Control Agency requested that Minnesota Department of Health (MDH) review and recommend inhalation toxicity values (inhalation unit risks [IURs] and reference concentrations [RfCs]) for use in deriving Intrusion Screening Values (ISV) for vapor intrusion investigations. IURs are defined as the upper bound excess cancer risk from a continuous lifetime exposure to a chemical, which is derived from toxicological studies. RfCs are also derived from toxicological studies and are defined by EPA as "an estimate, with uncertainty spanning perhaps an order of magnitude, of a continuous inhalation exposure to the human population, including sensitive subgroups, that is likely to be without an appreciable risk of deleterious effects during a lifetime." These values are provided here for transparency of MDH's toxicity value recommendations. Because these values were selected for use for vapor intrusion investigations, there may be exceptions to using these values for other applications.

Toxicity value selection

The sources of toxicity values used to develop the ISVs are MDH, EPA Integrated Risk Information System (IRIS), EPA's Provisional Peer Reviewed Toxicity Values (PPRTVs), the Agency for Toxic Substances and Disease Registry (ATSDR), and the California Environmental Protection Agency.

MDH used professional judgment to evaluate toxicity study designs and findings to select the highest quality toxicity values available at the time, given limited review time. For some chemicals, toxicity values were available, but not used to calculate an ISV because of concerns about data quality, weak evidence of carcinogenicity, and other considerations.

For some chemicals the toxicity value advice is different from what was used as the basis for the 2002 MDH Health Risk Value (HRV) because newer information was available for these chemicals. The vinyl chloride IUR is different for the ISV than the HRV because MDH used a unique equation provided by EPA (EPA, 2000) that adds early-life risk to later-life risk for a less than lifetime exposure. MDH continues to support the vinyl chloride HRV for a lifetime of exposure.

In addition, MDH chose to use less-than-chronic duration RfCs to calculate ISVs when chemicals lacked acceptable chronic RfCs. The shorter duration values were considered acceptable for vapor intrusion screening. These are indicated by footnotes in the main table below.

MDH reviewed available acute RfCs only if they were lower than any of the ISVs. The following table provides these additional acute toxicity values that were reviewed and are used in the ISV table per MDH recommendation:

Chemical	CAS #	Acute RfC (µg/m ³)	RfC Source
Chloroform	67-66-3	5	ATSDR (2024)
Methylene chloride (Dichloromethane)	75-09-2	2,000	ATSDR (2000)
Toluene	108-88-3	5,000	CalEPA (2020)
1,1,1-Trichloroethane (Methyl chloroform)	71-55-6	6,000	ATSDR (2024)
Vinyl acetate	108-05-4	3,500	ATSDR (2023)

Incorporating early-life sensitivity for linear carcinogens

The EPA recommends combining age-dependent adjustment factors (ADAFs) with the cancer toxicity values to account for early-life sensitivity. EPA developed ADAFs of 10, 3, and 1 for the age groups of 0-2 years, 2-16 years, and 16-70 years, respectively (USEPA, 2005). MDH agrees that for many carcinogens, toxicity values calculated from adult animal studies or adult epidemiological studies underestimate lifetime exposure cancer risk. MDH applies EPA's ADAFs to linear carcinogens, unless study data sufficiently account for early-life susceptibility, or there is other chemical-specific information to determine that a different numerical adjustment should be made, or that no adjustment is appropriate (MDH, 2010). MDH reviewed the study data for the carcinogens and as a result recommends applying ADAFs to risk assessment equations for these compounds (except for vinyl chloride) when the exposure scenario includes early-life.

Limitations

It may be appropriate to request further consideration of toxicity values from MDH as these recommended values do not reflect full chemical reviews. In addition, for chemicals that do not have a recommended toxicity value, it may be appropriate to contact MDH to see if *any* data exists to help determine if there is a risk for a given scenario.

Updates in 2024

- Acetone New acute value (ATSDR, 2022). This is the only value available.
- Chloroform New chronic value (ATSDR, 2024)
- Chloromethane (Methyl chloride) New chronic value (ATSDR, 2023)
- 1,1-Dichloroethene (DCE) New chronic value (ATSDR, 2022)
- 1,4-Dioxane Reviewed at MPCA's request; added a new chronic value and IUR (IRIS, 2013)
- Methyl tert-butyl ether (MTBE) New chronic value (ATSDR, 2023)
- 2-Methylnaphthalene New short-term value (ATSDR, 2024). This is the only value available.
- Vinyl acetate New chronic value (ATSDR, 2023)
- Vinyl chloride New subchronic value (ATSDR, 2024) replaces a higher chronic value.
- MDH reviewed and recommended the acute values in the above table.

References

EPA 2000. U.S. Environmental Protection Agency. Toxicological Review of Vinyl Chloride. May 2000. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/1001tr.pdf.

EPA 2005. U.S. Environmental Protection Agency. Supplemental Guidance for Assessing Susceptibility from Early Life Exposures to Carcinogens. March 2005. <u>http://epa.gov/cancerguidelines/guidelines-carcinogen-supplement.htm</u>.

MDH 2010. Minnesota Department of Health. Risk Assessment Advice for Incorporating Early-Life Sensitivity into Cancer Risk Assessments for Linear Carcinogens. July 2010. <u>http://www.health.state.mn.us/divs/eh/risk/guidance/adafrecmd.pdf.</u>

2024 MDH Volatile Organic Compound Toxicity Value Review for Vapor Intrusion Screening Values

Chemical	CAS #	RfC µg/m³	RfC Source	IUR (μg/m ³) ⁻¹	IUR Source
Acetone ¹	67-64-1			NA	NA
	07-04-1	20,000	ATSDR (2022)	NA	MDH
Benzene	71-43-2	3	MDH (2020)	7.8E-06	(2020)
Benzyl chloride	100-44-7	1	PPRTV (2008)	4.9E-05	CalEPA
Bromodichloromethane ²	75-27-4	20	PPRTV (2009)	NA	NA
Bromoform	75-25-2	NA	NA	NA	NA
Bromomethane (Methyl bromide)	74-83-9	4	ATSDR (2020)	NA	NA
Bromomethane (wethy bromide)	74-65-9	4	ATSDR (2020)	INA	MDH
1,3-Butadiene	106-99-0	2	IRIS (2002)	3.6E-05	(2010)
	100 55 0	2	CalEPA	3.0L-03	(2010)
Carbon disulfide	75-15-0	800	(2002)	NA	NA
			()		IRIS
Carbon tetrachloride	56-23-5	100	IRIS (2010)	6.0E-06	(2010)
Chlorobenzene	108-90-7	50	PPRTV (2006)	NA	NA
Chloroethane (Ethyl chloride) ²	75-00-3	4,000	PPRTV (2007)	NA	NA
Chloroform	67-66-3	2	ATSDR (2024)	NA	NA
Chloromethane (Methyl chloride)	74-87-3	60	ATSDR (2023)	NA	NA
Cyclohexane	110-82-7	6,000	IRIS (2003)	NA	NA
Dibromochloromethane	124-48-1	NA	NA	NA	NA
1,2-Dibromoethane (Ethylene			CalEPA		IRIS
dibromide)	106-93-4	0.8	(2001)	6.0E-04	(2004)
1,2-Dichlorobenzene	95-50-1	NA	NA	NA	NA
1,3-Dichlorobenzene	541-73-1	NA	NA	NA	NA
1,4-Dichlorobenzene	106-46-7	60	ATSDR (2006)	NA	NA
Dichlorodifluoromethane (Freon 12)	75-71-8	NA	NA	NA	NA
1,1-Dichloroethane	75-34-3	NA	NA	NA	NA
					IRIS
1,2-Dichloroethane	107-06-2	7	PPRTV (2010)	2.6E-05	(1987)
1,1-Dichloroethene (DCE)	75-35-4	4	ATSDR (2022)	NA	NA
cis-1,2-Dichloroethylene	156-59-2	NA	NA	NA	NA
trans-1,2-Dichloroethylene	156-60-5	20	MDH (2020)	NA	NA
					PPRTV
1,2-Dichloropropane	78-87-5	4	IRIS (1991)	3.7E-06	(2016)
	10061-				IRIS
cis-1,3-Dichloropropene ³	01-5	20	IRIS (2000)	4.0E-06	(2000)
	10061-				IRIS
trans-1,3-Dichloropropene ³	02-6	20	IRIS (2000)	4.0E-06	(2000)
Dichlorotetrafluoroethane	76-14-2	NA	NA	NA	NA
	122.01.1				IRIS
1,4-Dioxane	123-91-1	30	IRIS (2013)	5.0E-06	(2013)

Chemical	CAS #	RfC µg/m ³	RfC Source	IUR (μg/m ³) ⁻¹	IUR Source
Ethanol	64-17-5	NA	NA	NA	NA
Ethyl acetate	141-78-6	70	PPRTV (2013)	NA	NA
	111700	70	111111 (2010)		CalEPA
Ethylbenzene	100-41-4	300	ATSDR (2010)	2.5E-06	(2007)
4-Ethyltoluene	622-96-8	NA	NA	NA	NA
n-Heptane	142-82-5	400	PPRTV (2016)	NA	NA
Hexachlorobutadiene	87-68-3	NA	NA	NA	NA
n-Hexane	110-54-3	700	IRIS (2005)	NA	NA
2-Hexanone	591-78-6	30	IRIS (2009)	NA	NA
Isopropanol (2-propanol, isopropyl alcohol)	67-63-0	200	PPRTV (2014)	NA	NA
Methyl ethyl ketone (MEK, 2-Butanone) ¹	78-93-3	3,000	ATSDR (2020)	NA	NA
Methyl isobutyl ketone (MIBK)	108-10-1	3,000	IRIS (2003)	NA	NA
	1634-04-	,			-
Methyl-tert-butyl ether (MTBE)	4	4,000	ATSDR (2023)	2.6E-07	CalEPA
Methylene Chloride (Dichloromethane)	75-09-2	600	IRIS (2011)	1.0E-08	IRIS (2011)
2-Methylnapthalene ⁴	91-57-6	2	ATSDR (2024)	NA	NA
			MDH (2004,		
Naphthalene	91-20-3	9	2017)	NA	NA
			CalEPA		
Propylene (Methylethylene)	115-07-1	3,000	(2000)	NA	NA
Sturopo	100-42-5	900	CalEPA/ATSD R	NA	NA
Styrene 1,1,2,2-Tetrachloroethane	100-42-5 79-34-5	NA	NA R	NA	NA
1,1,2,2-10110100011010	79-34-3	NA	NA	INA	MDH
Tetrachloroethylene (PCE)	127-18-4	15	MDH (2014)	3.0E-06	(2014)
Tetrahydrofuran	109-99-9	2,000	IRIS (2012)	NA	NA
Toluene (Methylbenzene)	108-88-3	4,000	ATSDR (2017)	NA	NA
1,2,4-Trichlorobenzene	120-82-1	2	PPRTV (2009)	NA	NA
1,1,1-Trichloroethane (Methyl chloroform	71-55-6	5,000	IRIS (2007)	NA	NA
1,1,2-Trichloroethane	79-00-5	0.2	PPRTV (2011)	NA	NA
Trichloroethylene (TCE)	79-01-6	2	IRIS (2011)	4.1E-06	IRIS (2011)
Trichlorofluoromethane (Freon 11) ²	75-69-4	1,000	PPRTV (2009)	NA	NA
1,1,2-Trichlorotrifluoroethane (CFC-113)	76-13-1	5,000	PPRTV (2016)	NA	NA
1,2,4-Trimethylbenzene	95-63-6	60	IRIS (2016)	NA	NA
1,3,5-Trimethylbenzene	108-67-8	60	IRIS (2016)	NA	NA
Vinyl acetate	108-05-4	1,100	ATSDR (2023)	NA	NA
Vinyl chloride ⁵	75-01-4	50	ATSDR (2024)	4.4E-06	IRIS (2000)
	179601-				
m&p-Xylene ⁶	23-1	100	IRIS (2003)	NA	NA

Chemical	CAS #	RfC µg/m³	RfC Source	IUR (μg/m ³) ⁻¹	IUR Source
o-Xylene ⁶	95-47-6	100	IRIS (2003)	NA	NA

Notes

NA = not available

¹ based on an acute RfC

² based on a subchronic RfC

³ based on 1,3-Dichloropropene cas # 542-75-6

⁴ based on a short-term RfC

⁵ this vinyl chloride IUR is based on an exposure for an adult and is used in a special equation for a less than a lifetime exposure. MDH continues to support the HRV and the IUR of 8.8E-06 for continuous exposure from birth for a lifetime of exposure.

⁶ based on total xylenes cas # 1330-20-7

Contact Information

Minnesota Department of Health Site Assessment and Consultation Unit 651-201-4897 health.hazard@state.mn.us

To obtain this information in a different format, call: 651-201-4897.

07/2024