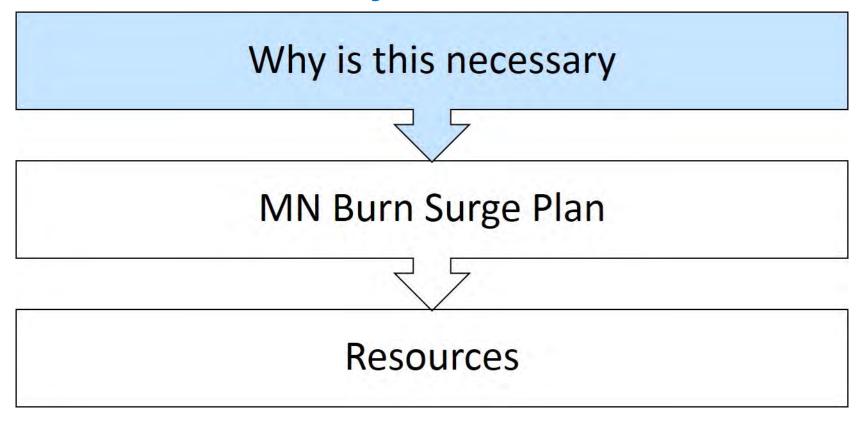
Minnesota Burn Surge Education

Emergency Preparedness and Response

Version August 2016

Introduction

- Module 1: Minnesota Statewide Burn Surge Planning
- Module 2: Introduction to Burn
- Module 3: Burn Treatment and Stabilization
- Module 4: Special Treatment Considerations

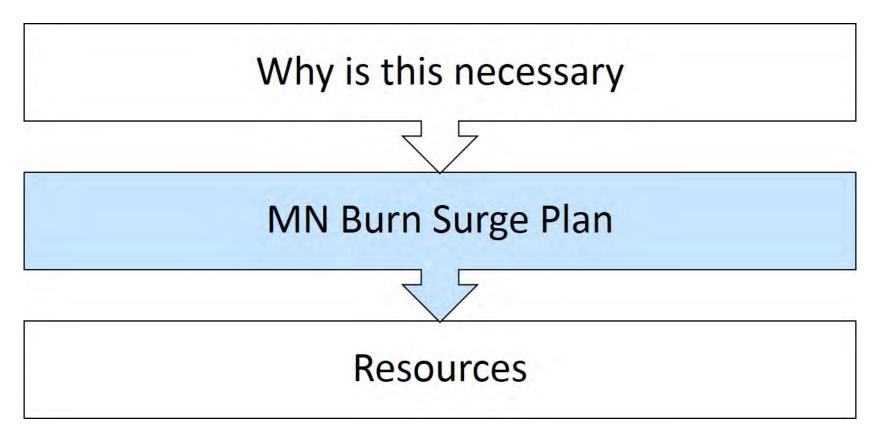


Module 1:

Minnesota Statewide Burn Surge Planning

Objectives

Why is this necessary

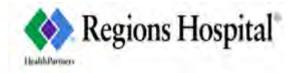


Definition of a Burn Disaster

A burn disaster is defined by the American Burn Association (ABA) as any incident where capacity and capability is insufficient, patient care may be compromised, patient care is possible, and may require an individual Burn Center, state, regional, or federal disaster response.

Objectives

MN Burn Surge Plan: 3 Phases


All agencies are to follow normal			
operating referral and transportation protocols.	Phase 2 – MN Burn Center and Metro Regional Response		
HCMC Burn Center licensed for 17	Burn Center Medical Directors will		
beds and can surge up to 25 beds.	assist in decision making of patient transport to Burn Surge Facilities or outside MN .	Phase 3 – MDH State Response	
Regions Burn Center licensed for 18 beds and can surge up to 25 beds.	Metro Regional hospitals will surge as needed to assist in increasing regional	Burn Surge Facilities will be activated and receive instructions on definitive care for any patients they are	
MN Burn centers will provide communication to requesting hospital within an hour	capacity of treating burn victims.	stabilizing. Decision should be within 6-8 hours of activating state plan.	
		National Inter-State partners will be activated: Mid-West ABA Region – Nebraska and DHHS Region V: Great Lakes Health Partnership	

MN ABA verified Burn Centers

Hennepin County Medical Center

National verification by the American Burn Association (ABA) & the American College of Surgeons - Committee on Trauma (ACS-CoT)

Integrated multidisciplinary teams - optimal functional & cosmetic outcome

Experienced care of burn injuries of any size or mechanism in all ages

- associated trauma
- multiple medical conditions
- physical, occupational & psychological care, rehabilitation and reintegration
- integrated regional mass casualty coordination

Burn Surge Facilities

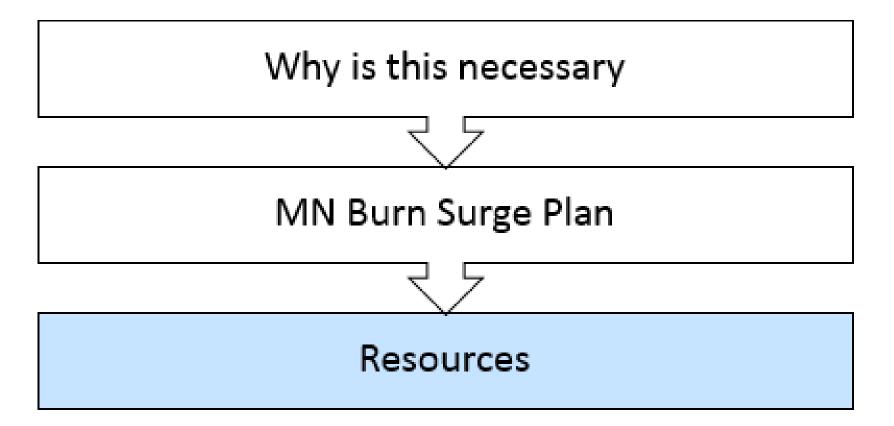
Burn Surge Facility	Regions
Mayo Clinic Hospital – Rochester	Facility will serve as point of referral for
	both SE and SC regions.
Sanford – Worthington	Facility will serve as point of referral for
	SW region.
St. Cloud Hospital	Facility will serve as point of referral for
	both Central and WC regions.
Altru – Grand Forks	
Sanford – Fargo	Facility will serve as point of referral for
	both NW and WC regions.
Essentia Health – Fargo	
Essentia Health – Duluth	Facility will serve as point of referral for
	NE region.
Abbott Northwestern	Facility will serve as point of referral for
	Metro region.
Children's Hospitals & Clinics	
Mercy Hospital	
North Memorial	
UMMC – M Health	

Role of Burn Surge Facility

Severely burned patients require a dedicated burn facility for definitive care.

Note: Info recommended below is taken from MN Burn Surge Plan

Initial Assessment & Treatment


- Recognize and treat any associated trauma
- Diagnose burn size & initial depth
- Initial burn dressings/wound care
- Continue resuscitation

Stabilization (72H)

- Surgical/Critical Care Management
- Communication with Incident Command Center
- Supportive care: fluids, analgesia, ventilator support, nutrition
- Plan and coordinate transfer to Verified Burn Center for definitive management

Objectives

Resources

- MDH Burn Surge website <u>http://www.health.state.mn.us/oep/healthcare/burn/</u>
- American Burn Association <u>http://ameriburn.org/</u>
- HCMC Burn Center <u>http://www.hcmc.org/clinics/burncenter/</u>
- Regions Hospital Burn Center
 <u>http://www.regionshospital.com/rh/specialties/burn-center/</u>

Module 2:

Introduction to Burn

Objectives

Discuss the nature and epidemiology of burn injuries

Overview of skin and burn classifications

Incidence

- 1.25 Million injuries / year
- 450,000 patients seek treatment per year
- 40,000 patients hospitalized annually
- 3,400 deaths from burn injuries
- 96.1% overall survival rate

Demographics

Gender	Ethnicity	
69% Male	59% Caucasian	
31% Female	19% African-American	
	15% Hispanic	
	7% Other	

Injury Types

- 44% fire/flame
- 33% scald
- 9% contact
- 4% electrical
- 3% chemical
- 7% other

Location

- 69% Home
 - Kitchen scald
- 9% Occupational
- 7% Street/Hwy
- 5% Recreational/Sport
- 10% Other

High Risk Groups

Children

- Scald injuries most common
- Elderly
 - Flame injuries most common
 - Pre-existing conditions

High Risk Groups

Chemical intoxication

- Risk-taking behavior
- Impaired responsiveness
- 40% of house fire deaths are associated with substance abuse

Objectives

Discuss the nature and epidemiology of burn injuries

Overview of skin and burn classifications

Skin Function

- Protects from infection and injury
- Regulates body temperature
- Prevents loss of body fluids
- Sensory contact with environment

Skin Anatomy

- Epidermis¹
- Dermis -
- Dermal Appendages <</p>
- Subcutaneous Tissue

Burn Definition

 An injury to tissue usually caused by heat but also by abnormal cold, chemicals, poison gas, electricity, or lightning.

Burn Wound Zones

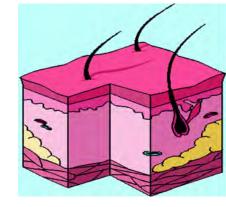
Zone of Coagulation

 Dead and stays dead regardless of Rx

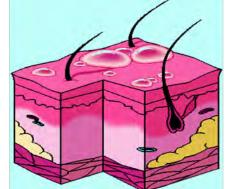
Zone of Stasis

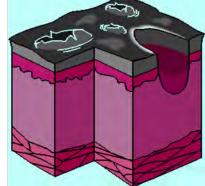
- Area of vessel contraction
- Inflamed
- Ischemic
- ± viable depending on care

Zone of Hyperemia


- Vessel dilatation
- Capillary permeability
- Viable with good care and no infection

Images courtesy of Nicole S. Gibran, MD, FACS; Harborview Medical Center, Education Presentations


Burn Depth


Four categories

- First Degree
- Second Degree
- Third Degree
- Fourth Degree

MDH

First Degree Burn (Superficial)

- "Sunburn" injury
- Epidermis only
- No scarring
- No disfigurement


Note: First degree burns do NOT count toward calculation of TBSA burned

Second Degree Burn (Partial-Thickness)

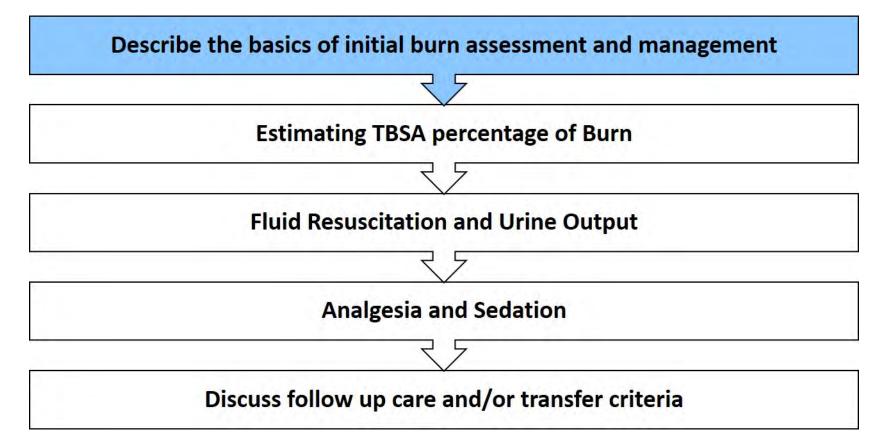
- Entire epidermis and part of dermis
- Pink and blistered
- Most painful
- Heals in 2-3 weeks
 - Via Dermal Appendages
- Pigmentation changes
- Minimal scarring
- +/- skin grafting

Third Degree Burn (Full-Thickness)

- Entire dermis and epidermis
- White, dry appearance
- Coagulated vessels
- Scarring and disfigurement
- Heals by contracture
- Skin grafting indicated

Fourth Degree Burn (Deep Full-Thickness)

- Burn into underlying structure
- Often charred
- Disfigurement
- Disability



Module 3:

Burn Treatment and Stabilization

Objectives

Initial Care

- Stop the burning process
- Initial resuscitation flows just like trauma
 - Airway
 - Breathing
 - Circulation
 - Disability
 - Exposure
 - Fluids

Airway/Breathing

Indications for Intubation

Hoarseness, voice change	Stridor	Large TBSA burn (>50%)	Extensive facial burns
Burns inside mouth	Significant burn edema	Signs of obstruction	Difficulty swallowing
Using accessory muscles	Inability to handle secretions	Respiratory fatigue	Poor oxygenation/ven tilation
	Very large doses of narcotics	Impaired level of consciousness, not protecting	

Circulation

Assess for pulses in extremities and hemodynamic stability

If there is active hemorrhage control with direct pressure – if this fails, tourniquet and or surgical control may be used

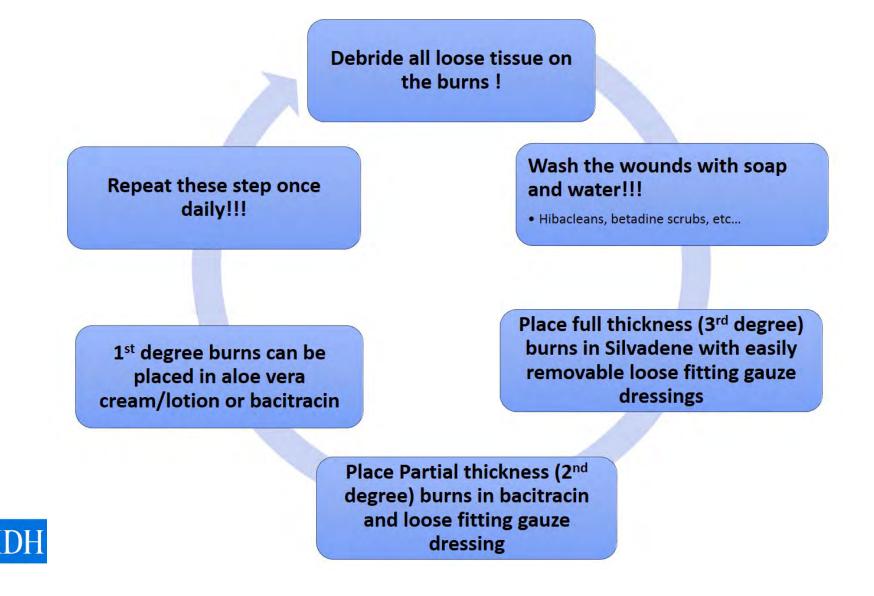
The burn will remain stable throughout hemorrhage stabilization

Resuscitate with Crystalloid (LR) and blood products as needed to treat hypotension in addition to burn fluid resuscitation

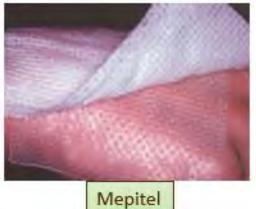
Circulation

- May need to place Arterial lines for accurate monitoring of blood pressure in the setting of multiple extremity burns
- Monitor and trend central venous pressures
- Monitor bladder pressures and compartment pressures of the affected extremities
- Monitor for ongoing traumatic injuries:
 - Intracranial hemorrhages
 - Bowel injuries

Acute Burn Care


Burn wound management

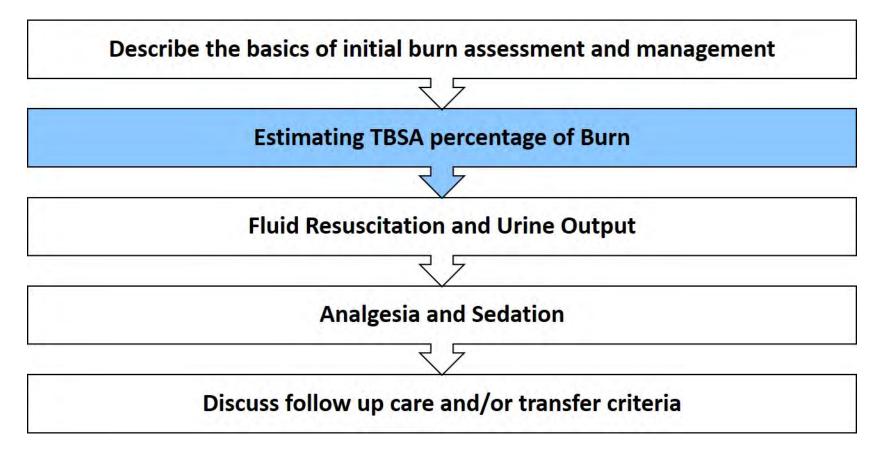
- Local wound care (this is important)
- After wounds are clean, assess for escharotomy requirements
- Skin grafting MAY BE REQUIRED, HOWEVER NO NEED FOR SURGICAL INTERVENTION IN 1ST 72 HOURS!


Local Wound Cares

Options of Burn Dressings

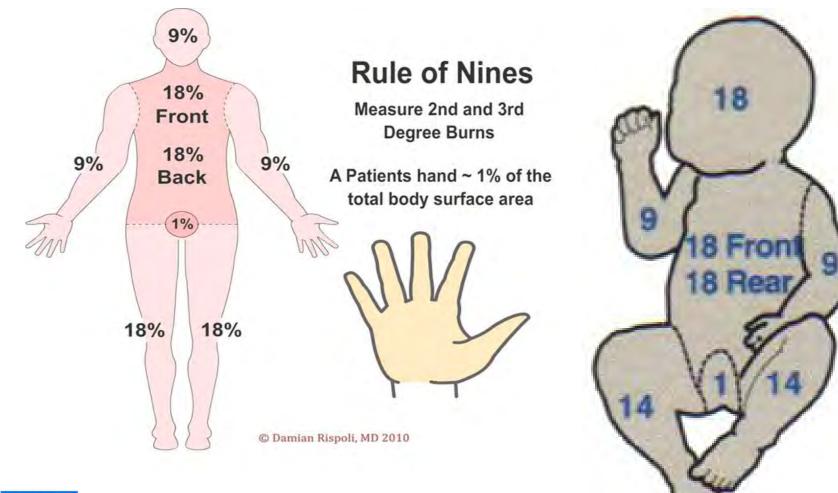
Options of Burn Dressings

Acticoat & Acticoat Flex



Mepilex Ag

Objectives

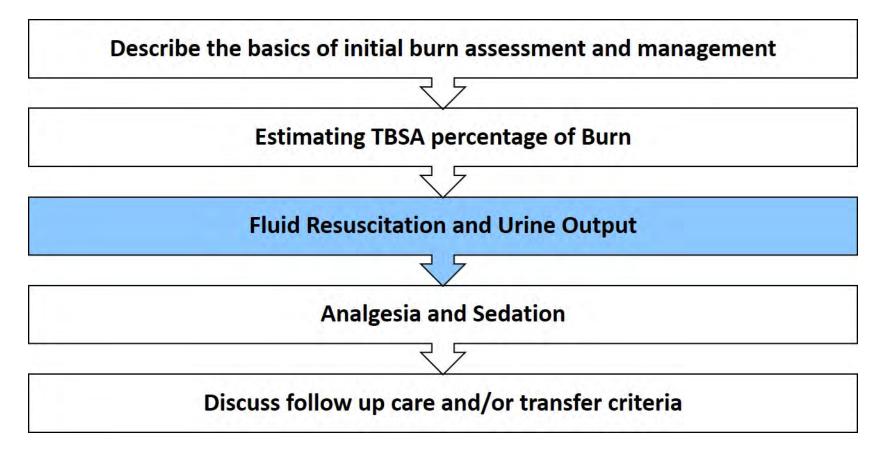

Estimating Percent TBSA

1% TBSA = size of patient hand (whole palmer surface)

"Rule of Nines"

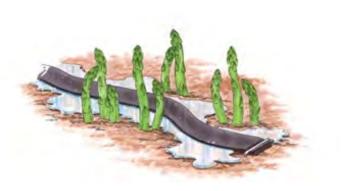
Method of Lund and Browder

Burn Surge Facilities should use Lund and Browder method


of Lund and Browder
HIT A HATA
b = b = b = b = b = b = b = b = b = b =
111 Julie
and have a final

	Birth 1 yr.	1–4 yrs.	5–9 yrs.	10–14 yrs.	15 yrs.	Adult	Burn size estimate
Head	19	17	13	11	9	7	
Neck	2	2	2	2	2	2	
Anterior trunk	13	13	13	13	13	13	
Posterior trunk	13	13	13	13	13	13	
Right buttock	2.5	2.5	2.5	2.5	2.5	2.5	
Left buttock	2.5	2.5	2.5	2.5	2.5	2.5	
Genitalia	1	1	1	1	1	1	
Right upper arm	4	4	4	4	4	4	
Left upper arm	4	4	4	4	4	4	
Right lower arm	з	з	з	з	з	з	
Left lower arm	з	з	з	з	з	з	
Right hand	2.5	2.5	2.5	2.5	2.5	2.5	
Left hand	2.5	2.5	2.5	2.5	2.5	2.5	
Right thigh	5.5	6.5	8	8.5	9	9.5	
Left thigh	5.5	6.5	8	8.5	9	9.5	
Right leg	5	5	5.5	6	6.5	7	
Left leg	5	5	5.5	6	6.5	7	
Right foot	3.5	3.5	3.5	3.5	3.5	3.5	
Left foot	3.5	3.5	3.5	3.5	3.5	3.5	

Total BSAB -


Objectives

- Soaker hose analogy
- Fluid leaks out of vessels at a predictable rate, similar to that of a soaker hose
- Goal is to titrate intravenous fluids (IVF) to this rate in order to maintain intravascular volume
- Urine Output is a marker of intravascular volume and can be used to titrate IVFs

Restore intravascular volume

- Crystalloid
 - Parkland, Mod Brooke
- Colloid
 - Evans, Slater
- Hypertonic
 - Warden, Demling/Dextran
- NO BOLUS THERAPY except to correct initial hypotension!!!

- Rate out (capillary leak) = Rate in (IV fluid rate)
- Kidneys are the Canary in the coalmine!
- Strive for hourly UOP of 30-50 ml/hr

or

0.5 ml/kg of ideal body weight

- Initial fluid resuscitation rates while figuring out burn TBSA % and ongoing issues and during patient transfer:
 - 5 years old and younger–LR @ 125 ml/hr
 - 6-14 years old LR @ **250 ml/hr**
 - 15 years and older LR @ 500 ml/hr
 - Extreme injury– LR @ **750 ml/hr**
- Ongoing resuscitation for 2nd and 3rd degree burns
 - Adults: 3 mL/kg/% TBSA over first <u>24 hours</u>
 - Children: 3 mL/kg/% TBSA over first <u>24 hours</u>
 - Rhabdo/Electrical: 4 mL/kg/% TBSA over first <u>24 hours</u>

No Bolus therapy!!

Example:

- 100Kg male with 50% burn
- 3ml / Kg / %TBSA
 - 3ml x 100kg x 50 = 15000 ml
- Total 24 hr volume: 15 L

Starting infusion rate – needed to meet UOP goals: Total volume / 16

1st 8 hrs: 7.5L (940ml/hr) 2nd 16 hrs: 7.5L (470ml/hr)

Note: Adjust by urine output

Adequate Resuscitation

- High to normal pulse for age
- Urine output
 - Peds: 0.5-1.0mL/kg/hr averaged over 2-4 hours
 - Adults: 0.5mL/kg/hr averaged over 2-4 hours
- Mean arterial pressure <a>> 60 mmHg

- Fluid of choice for resuscitation is Lactated Ringers
- Fluids can be increased by 10% each hour that urine output (UOP) goals are not achieved
- Albumin infusion can be initiated in patients with an hourly UOP that is less than 30ml/hr for eight consecutive hours, despite escalating fluid infusion volumes

- Rarely need to exceed greater than 1 liter of LR/hr
- The fore mentioned formulas are resuscitation starting points and UOP should be used to guide therapy
- Most burn resuscitations last appx 24-48 hours
 - As patients close their capillary leak syndrome, fluids should be titrated to a maintenance fluid rate
 - This is also dependent on hourly UOP and associated labs

Fluid Resuscitation: Compartment Syndrome

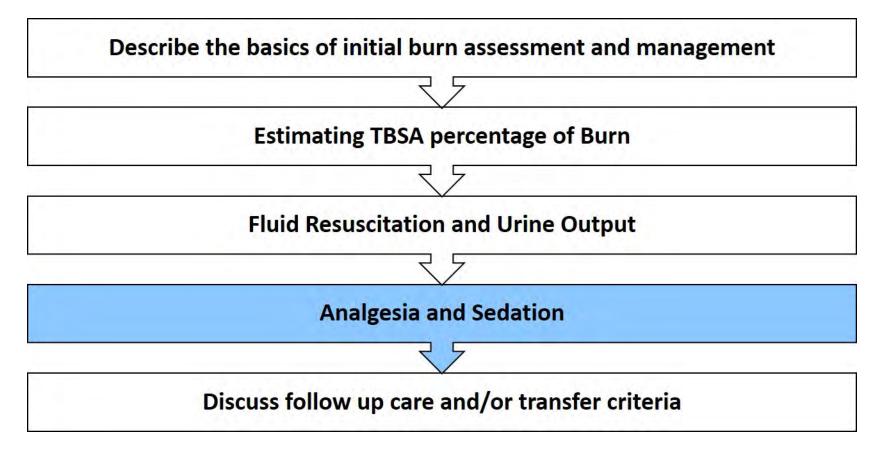
What is it?

- Capillary leak resulting from 2nd and 3rd degree burns increases fluid in tissue
- Develop from excess fluid administration and with bolus therapy.
- Pressure in the area increases within burned, non-pliable skin and leads to decreased blood flow to the extremity

What to look for?

- Progressing pain
- Sensory changes to distal extremity (if not burned)
- Poor circulation distally (capillary refill, pallor, late changes to pulses)
- If in doubt check compartment pressures! (can call for consult!)

Fluid Resuscitation: Compartment Syndrome


When / how to treat

- >30 mmHg compartment pressure treat, consider when pressures approach 20 mmHg
- Escharotomy (through burn) indicated in extremities to relieve pressure and restore perfusion
- Fasciotomy (into muscle) in extreme cases and in electrical injuries when muscle is damaged and contributing

Objectives

Analgesia and Sedation

- Pain needs to be assessed and quantified as background pain and procedural pain
- Pain and analgesic treatment should be assessed hourly and adjusted to achieve adequate pain control
- Burn pain is treated in three distinct modalities
 - Pharmacological
 - Surgical
 - Behavioral

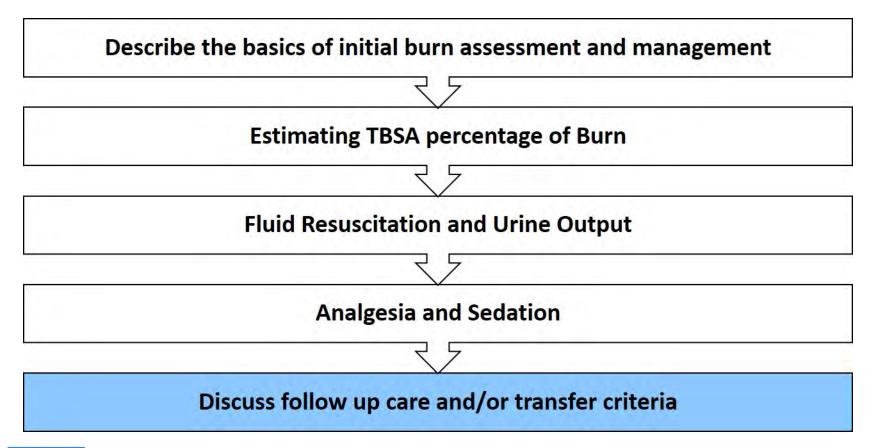
Pain management

- Surgical management consists of closing open wounds and completion of skin grafting procedures
- Pharmacological management of pain

Pain medications should be scheduled and not administered on a PRN basis

Keep in mind the elderly when administering pain and anxiety medications

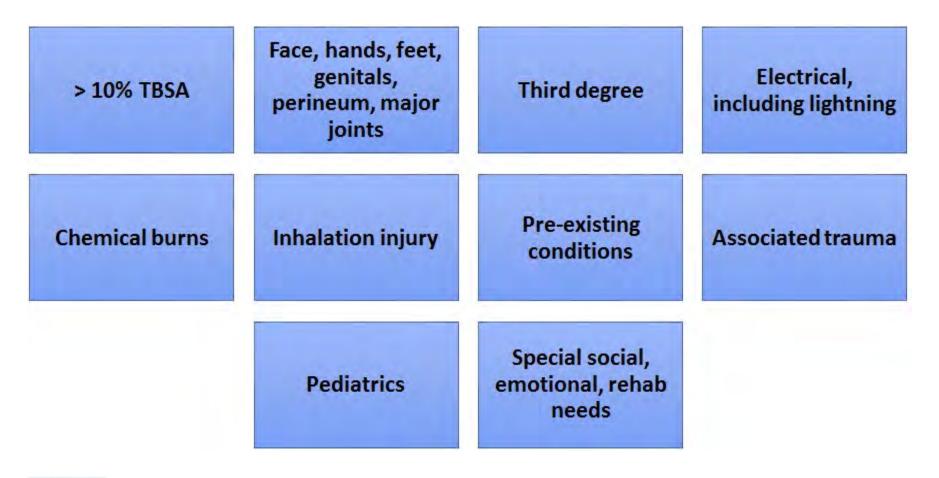
Treat pain and anxiety in a 2:1 ratio for procedures


Pain medications can be augmented with antianxiety medications

Treat background pain and procedural pain separately

Manage side effects and assess for respiratory depression frequently in the non intubated patient

Objectives



Prep for Outpatient Clinic

- Bacitracin/Adaptic (B&A) dressings
 - Silvadene alters wound appearance, pseudoeschar
 - Silvadene OK for very deep or possibly infected wounds
- Supplies to change dressings daily
- Pain medication until patient can be seen by burn center
- Tetanus booster
- Important to know referral burn centers contact information
- Follow up to burn center in one week or less

Referral Criteria for Burn Center

Prep for Transfer

- Consider other lifethreatening injuries/conditions
- SECURE all lines/tubes
- Dry sterile covering to wounds
- Imaging and labs
- Tetanus booster

- Continuous IV fluids Parkland Formulas or use following:
 - < 5 yo: 125 mL/hr</p>
 - 6-14 yo: 250 mL/hr
 - 15 yo and up: 500 mL/hr
 - Severe burn with associated trauma and inhalation injury/electrical injuries: 750 mL/hr
- Air vs. Ground
- Most admit directly to Burn Centers if able

Guidelines for Safe Transport

Keep Patient warm and dry, no wet dressings

Secure airway if necessary before transport

Initiate fluid resuscitation

Foley catheter in place

Tetanus prophylaxis

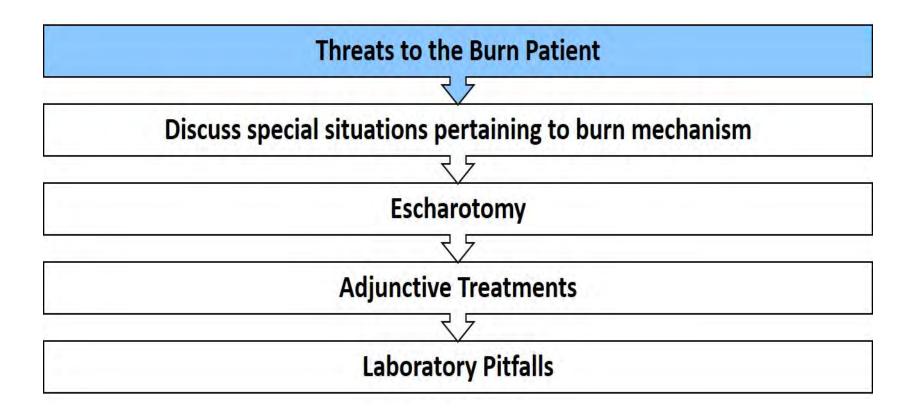
Continue pain and sedation medications

No Bolus therapy unless overtly hypotensive

Transport issues (Ground and Rotary Transport service areas)

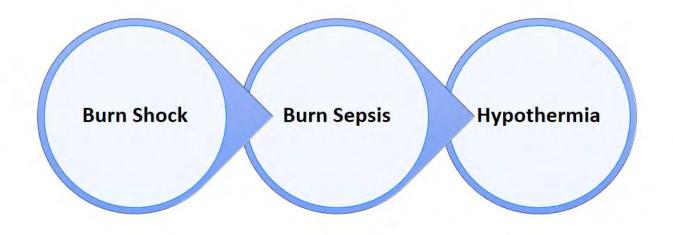
Air Service	Rotor Wing	Fixed Wing	IFR Rotor Capability	Dispatch	Bases	Hospital System
Avera Careflight	х	х	х	1-800-592-1889	SD	Avera
Life Link III	х	Х		1-800-328-1377	MN, WI	Hospital Consortium
Mayo One	х	х	х	1-800-237-6822	MN, WI	Mayo Clinic
MedLink AIR	х		х	1-800-527-1200	WI	Gunderson Health System
Mercy Air Med	х			1-877-463-7291	IA	Mercy North Iowa
Ministry Spirit Air	х		х	1-888-411-1362	WI	Ministry Health Care
North Memorial Air Care	х		х	1-800-247-0229	MN, WI	North Memorial Medical Center
NorthStar Criticair	х			1-800-223-1596	ND	Trinity Health
Sanford Air Med	х	Х	х	1-844-424-7633	MN, ND, SD	Sanford Health
Valley Med Flight	х	х		1-800-828-0168	MN, ND, MI	Independent

Transportation Services and their logos



Module 4:

Special Treatment Considerations



Objectives

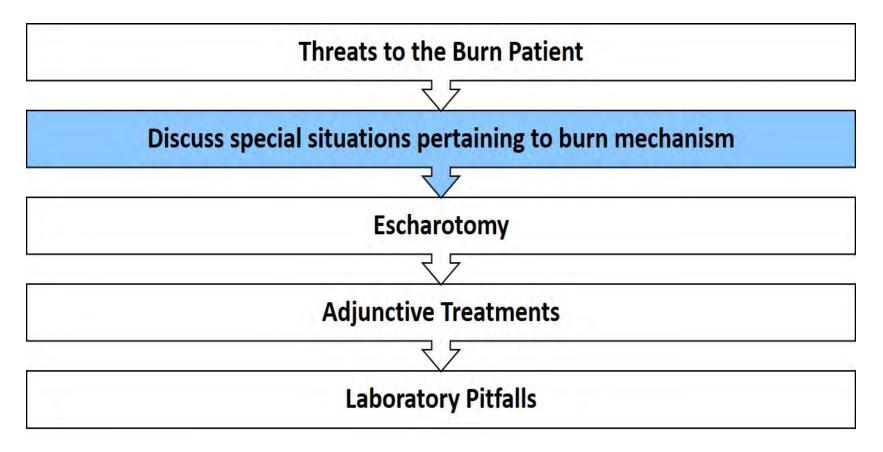
Specific Threats to Burn Patients

Burn Shock

- Burn Patients typically die from one of two causes:
 - "Burn shock" resulting in early deaths
 - Multiple organ failure and sepsis leading to late deaths
- Burn shock is multifactorial:
 - Hypovolemic distributive shock *plus*
 - Mediator dependent reduction of cardiac output also contributes to the "burn shock" state, this is similar to a high output cardiogenic shock
 - This can be significant in patients with an underlying heart disease, such as congestive heart failure

Burn Sepsis

- Typically results in late burn deaths
- "Burn sepsis" prevention is facilitated by the early removal of devitalized tissue (eschar)
 - Typically try to have devitalized eschar removed within one week
 - Removal of eschar relieves the patient of heavily colonized wounds that lead to recurrent episodes of bacteremia
- Avoid the obvious critical care infections: line infections, ventilator associated event/pneumonia, etc...and identify and treat these infections early



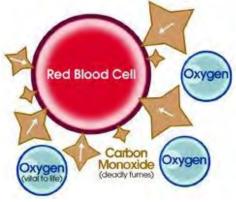
Hypothermia

- Thermoregulatory control is dependent on inputs from the:
 - Skin (the ultimate breathable insulating garment!)
 - Central nervous system stimulation
 - External interpretations of the environment by the brain
- With large burns, the body is unable to use these thermoregulatory pathways resulting in hypothermia
- Prevention is the best treatment
 - Heat rooms to >80 degrees Fahrenheit
 - Warm fluids
 - Bair huggers, and external heating devices may be required to maintain normothermia

Objectives

Special Circumstances

- Electrical injuries
- Inhalation injuries
- Chemical burns


NOTE: Radiation injuries not included here as the burn component is a minor issue compared to the acute radiation exposure issues – Contact on call specialists at MN Regional Poison Center 800-222-1222 for chemical and radiation issues.

Electrical injuries

- Injury is largely considered an inside-outside injury
 - Meaning muscle and internal compartment damage may be major but the external signs are often minor
 - Monitor for compartment syndromes:
 - This may be present in extremities that are not initially thought to be affected
 - Monitor CMS checks closely on all extremities, not just affected extremities
 - May require fasciotomies rather than escharotomies
- Considered significant when involved Voltage > 1000 volts
- Cardiac monitor and EKG required
- Monitor CK levels and rhabdomyolysis, treat with increased IVF and urine alkalization

- Smoke inhalation is a 'toxic soup'
 - Particles and chemicals
- Carbon Monoxide (CO) poisoning
 - 200x > affinity for Hgb than O₂
 - SpO₂ abnormally elevated (normal on monitor)
 - Half life
 - Room air: 250 mins
 - 100% FiO2: 40-60 mins
 - 3 atm HBO: 20 mins

CO Poisoning

CO Hgb Saturation (%)	Symptoms
0-9%	None
10-20%	Headache, vasodilation
20-30%	Headache, pulsating temples
30-40%	Severe headache, nausea/vomiting, weakened sight, prostration
40-50%	As above, increased RR and HR, asphyxiation
50-60%	As above, coma, seizure, cheyne- Stoke breathing
> 60%	Coma, seizure, cardiopulmonary collapse, death

CARBON MONOXIDE

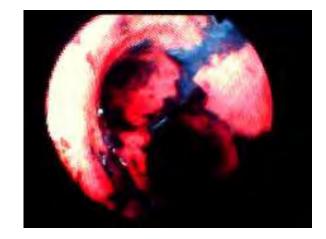
Cyanide (CN) poisoning

- Commonly produced by synthetic compounds (i.e. burning carpet, vinyl and household goods)
- Binds to cytochrome oxidase
 - Blocks cellular respiration
 - Synergy with CO
- Effects within seconds of inhalation
- Persistent lactic acidosis resistant to resuscitation
- ALWAYS consider with closed space smoke exposure

Treating CN Poisoning

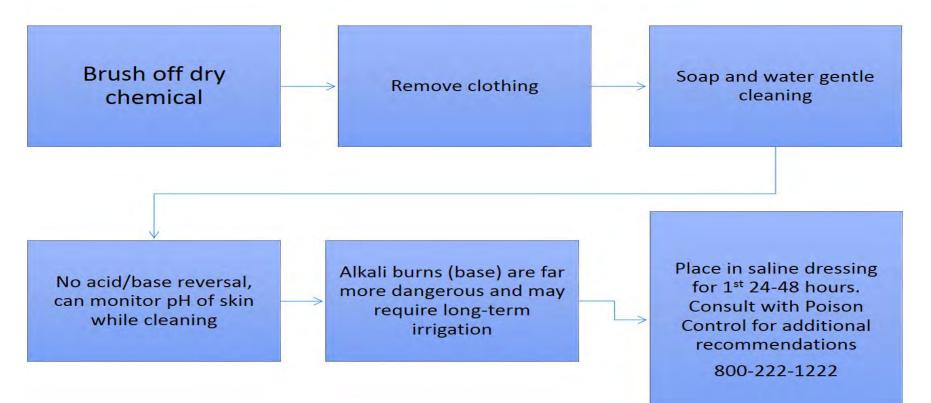
"Old" Cyanide kit (Lilly Cyanide Antidote)

- Amyl nitrate, thiosulfate, sodium nitrite
- Methemoglobin generators


"New" Cyanide kit (Cyanokit)

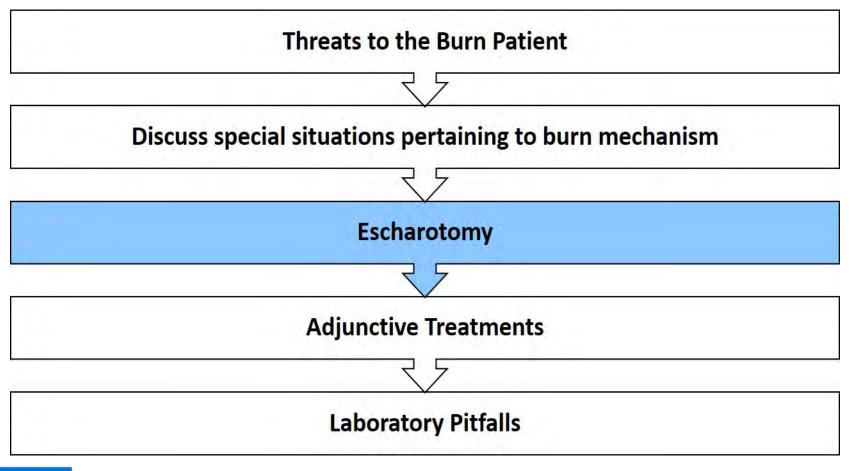
- Hydroxycobalamine (Vit B12 precursor) 5 mg x1
- May repeat dose x1
- Side effects flushing, HTN, lab interference

Diagnosis


- History
 - Enclosed environment
 - Escape impeded
 - Loss of consciousness
- Exam
 - Hoarseness or voice change
 - Barking cough
 - Sooty airways, carbonaceous sputum
 - Burns inside mouth

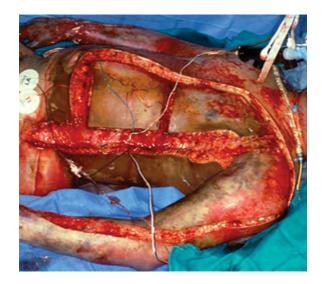
- Airway management (if indicated)SECURE!!
- Protective vent settings
- Pulmonary toilet
- Inhaled medications
 - Bronchodilators
 - Heparin
 - Acetylcysteine
- Percussive ventilation
- ECMO
- Bronchoscopy

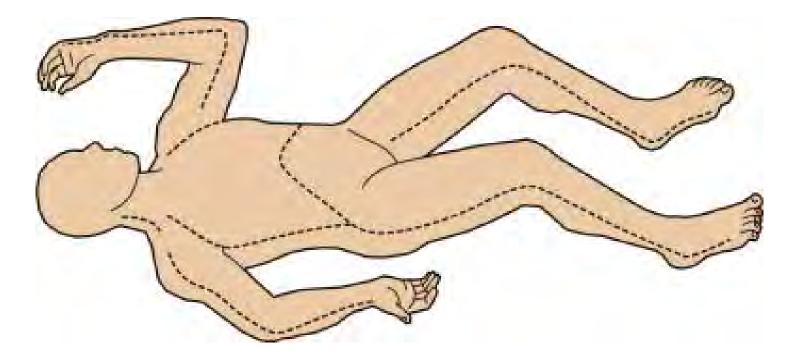
Chemical Burns Initial treatment of Chemical Injuries

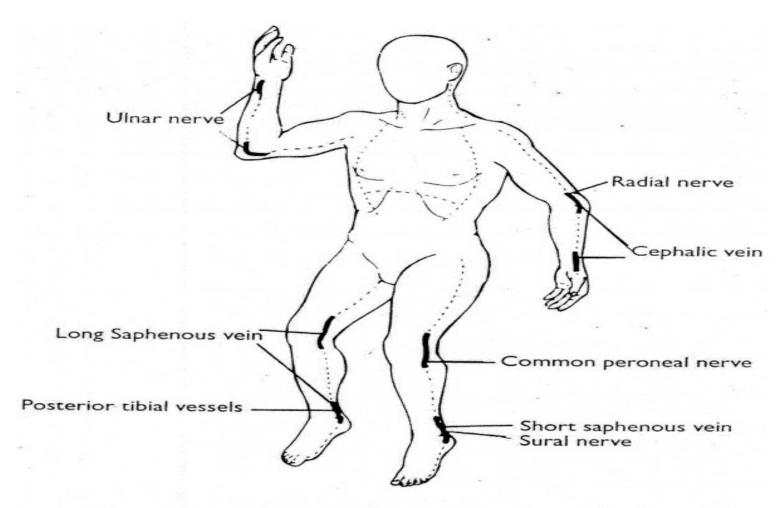

Hydrofluoric acid

(main thing here is to recognize the exposure)

- Consult Poison Control!
- Topical and IV calcium
- Intra-arterial calcium may be needed
- Continued pain = continued calcium need
- Monitor electrolytes every eight hours and correct as needed, particularly potassium and calcium
- Cardiac monitor
- Local wound cares once initial exposure is treated, usually go on to require surgery or amputation as burn are very deep (4th degree)


Objectives


Escharotomy



Proper Placement of Escharotomies

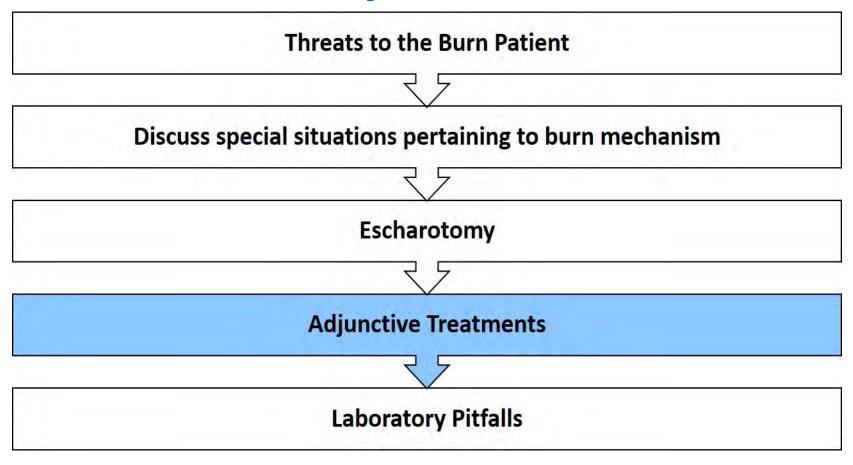
Escharotomy Pitfalls

Escharotomy

Prep eschar with betadine solution prior to performing

Increase sedation prior to performing procedure

Perform with bedside or in operating room with electrocautery


- Release should transect the entire thickness of the eschar and dead dermis
- Release should open approximately 2 cm
- Control bleeding with electrocautery

Monitor for pulses and completeness of procedure as patient continues to resuscitate and edema progresses

May need to repeat or extend escharotomies

Objectives

Adjunctive Treatments

Thrombophlebitis

- Monitor IV sites daily
- IVs placed in the field should be replaced within 24 hours
- Frequent lab draws and progressive edema may necessitate central venous access and arterial line placement

Infection Control

- Catheter associated blood stream infections (CLABSI)
 - Use antimicrobial impregnated catheters if possible
 - Place lines through intact skin if possible
 - Change catheter dressings often and as needed and reassess for rewiring or replacement of the line
 - Always use sterile technique

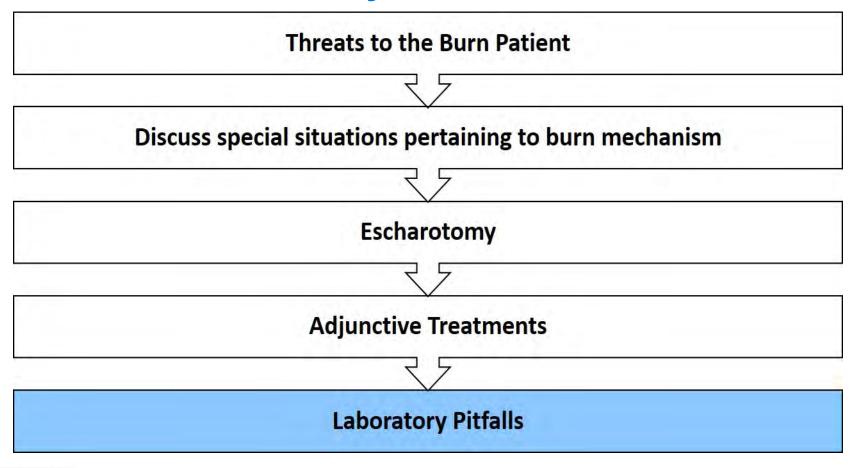
Adjunctive Treatments

Infection Control cont....

- NO need for Prophylactic administration of antibiotics, this only leads to increased microbial resistance
- Urinary catheter related infections typically not an issue within the first 72 hours
- Monitor for ventilator associated events/pneumonias
 - Assess for QBAL and culturing bronchial aspirates prior to initiating empiric antibiotics
- Give all burn patients a Tetanus booster

Adjunctive Treatments

Hyperglycemia control


 Stress hyperglycemia is common, treat with insulin drip or subcutaneous insulin as needed to achieve serum blood sugars of 100-180

Metabolic Adjuncts

- Begin enteral feeds at trophic rates for all burns > 20% TBSA at 24 hours
- Begin to increase tube feeding rates as the resuscitation comes to an end, usually around 72 hours post burn
- Use a high protein, low fat tube feeding formula
- OK to feed the stomach as long as stomach residuals are monitored, post pyloric feeds are preferred

Objectives

Laboratory Issues and Pitfalls

Falling Platelets can be an example of sepsis and overall poor prognosis

Elevated Hgb and HCT are an example of hypovolemia and early burn shock

Persistent lactic acidosis refractory to resuscitation can be an indication of CN poisoning

Normal CO levels do not rule out CO exposures

Low Calcium should not be treated unless ionized calcium is checked

WBC initially elevated and may decline over 24-72 hours, sometimes resulting in neutropenia

MDH

Contact Burn Centers with any concerns!

Special Thanks to ...

- American Burn Association Advanced Burn Life Support Course 2016 for supplying images from the American Burn Association Advanced Burn Life Support Course 2016.
- Regions Hospital Burn Center for providing their expertise in the development of this education.
- Hennepin County Medical Center Burn Center for providing their expertise in the development of this education.
- MN Health Coalition Partners for their partnership in the development of this education.

THANK YOU

For more information, please contact:

Angie Koch, MPH

Planning Director State – Medical Surge Minnesota Department of Health Emergency Preparedness and Response

Health.hpp@state.mn.us

651-201-5700

Emergency Preparedness and Response